Disequazioni e sistemi di disequazioni

prof. Andres Manzini

Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell'Ingegneria Corso MOOC "Iscriversi a Ingegneria Reggio Emilia"

Disequazioni

Disuguaglianze fra numeri reali

Presi due numeri $a, b \in \mathbb{R}$, si verifica sempre una delle seguenti relazioni:

$$a < b$$
 $a = b$ $a > b$

La scrittura $a \ge b$ va intesa come vera se a > b oppure a = b.

- $2 \ge 2 \longrightarrow \boxed{V}$
- $2 > 2 \longrightarrow \boxed{F}$

Proprietà delle disuguaglianze

- $a > b \longrightarrow a + c > b + c$, $\forall a, b, c \in \mathbb{R}$
- $a > b, c > 0 \longrightarrow ac > bc, \frac{a}{c} > \frac{b}{c} \qquad \forall a, b \in \mathbb{R}$
- $a > b, c < 0 \longrightarrow ac < bc, \frac{a}{c} < \frac{b}{c} \qquad \forall a, b \in \mathbb{R}$

Disequazione

Una **disequazione** è una disuguaglianza fra due membri, di cui almeno uno contiene un'incognita. **Risolvere una disequazione** significa determinare i valori dell'incognita per i quali la disuguaglianza è vera.

Le disequazioni

- si classificano in base al grado: $3x + 2 \le -5x, x^2 3x > 0...$
- si definiscono **fratte** se l'incognita compare al denominatore: $\frac{2x+5}{x^2-9} \ge 2$
- si definiscono **irrazionali** se l'incognita compare sotto il segno di radice: $\sqrt{3x-2} > x+5$

Importante classificare correttamente la disequazione!

Soluzione di una disequazione

Disequazione	Insieme delle soluzioni	Rappresentazione sulla retta reale
<i>x</i> ≤ 3	$S = \{x \in \mathbf{R} \mid x \le 3\}$ ovvero l'insieme dei numeri reali minori o uguali a 3	0 3
$x > -\frac{2}{3}$	$S = \left\{ x \in \mathbb{R} x > -\frac{2}{3} \right\}$ ovvero l'insieme dei numeri reali maggiori di $-\frac{2}{3}$	$\frac{2}{3}$ 0

In generale la soluzione di una disequazioni si può esprimere come intervallo reale $S: (-\infty, 3]$ oppure $S: (-\frac{2}{3}, +\infty)$. Le disequazioni possono essere anche

- impossibili S : ∅,
- sempre verificate $S : \mathbb{R}$.

Disequazioni

NB Usando le proprietà delle diseguazioni si può sempre ricondurre la disequazione alla forma

$$f(x) > 0$$
 $f(x) \ge 0$ $f(x) < 0$ $f(x) \le 0$

Disequazioni di primo grado. Si presentano nella forma ax + b > 0 (o forme analoghe...)

•
$$ax + b > 0 \longrightarrow x > -\frac{b}{a}$$
 se $a > 0$
• $ax + b > 0 \longrightarrow x < -\frac{b}{a}$ se $a < 0$

•
$$ax + b > 0 \longrightarrow x < -\frac{b}{a}$$
 se $a < 0$

Esempi:

•
$$3x + 1 > 0 \longrightarrow x > -\frac{1}{3}$$

•
$$3x \le 7x \longrightarrow -4x \le 0 \longrightarrow x \ge 0$$

Disequazioni fratte

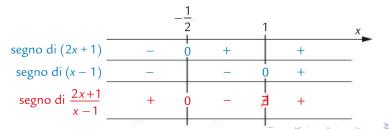
Occorre ricondurre la disequazione nella forma

$$\frac{f(x)}{g(x)} > 0$$
 $\frac{f(x)}{g(x)} \ge 0$ $\frac{f(x)}{g(x)} < 0$ $\frac{f(x)}{g(x)} \le 0$

La tecnica risolutiva generale prevede lo studio del segno della frazione attraverso lo studio dei segni di numeratore e denominatore.

Esempio:

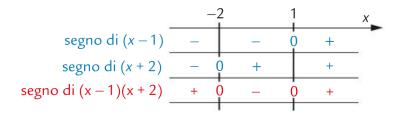
$$\frac{2x+1}{x-1} \le 0$$



Esempi

$$x^2 + x - 2 > 0$$

La disequazione è equivalente a (x-1)(x+2) > 0.



$$S:(-\infty,-2)\cup(1,+\infty)$$

Disequazioni di secondo grado

Si presentano nella forma canonica

$$ax^{2}+bx+c > 0$$
 $ax^{2}+bx+c \ge 0$ $ax^{2}+bx+c < 0$ $ax^{2}+bx+c \le 0$

- Risoluzione mediante scomposizione
 - $x^2 2x \ge 0$ raccoglimento a fattor comune
 - $x^2 4x + 4 > 0$ quadrato di binomio
- Risoluzione mediante equazione associata $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Risoluzione grafica (metodo della parabola associata)

Metodo dell'equazione associata

$$ax^{2}+bx+c > 0$$
 $ax^{2}+bx+c \ge 0$ $ax^{2}+bx+c < 0$ $ax^{2}+bx+c \le 0$

- Si riporta la disequazione nella forma canonica.
- Si determinano il numero delle soluzioni dell'equazione associata, che dipendono dal segno del discriminante $\Delta = b^2 4ac$
- Si determina la soluzione della disequazione in base al numero di soluzioni dell'equazione e in base al segno del coefficiente a e il verso della disequazione.

•
$$x^2 - 4x + 3 \ge 0 \longrightarrow x = 1, x = 3$$

$$S:(-\infty,1]\cup[3,+\infty)$$

•
$$x^2 - 5 < 0 \longrightarrow x = \pm \sqrt{5}$$

$$S: (-\sqrt{5}, +\sqrt{5})$$

Metodo dell'equazione associata

•
$$x^2 + 3x + 5 \ge 0 \longrightarrow \Delta < 0$$

$$S:(-\infty,+\infty)$$

•
$$x^2 + x + 15 < 0 \longrightarrow \Delta < 0$$

$$S: \varnothing$$

Se nell'equazione associata $\Delta=0$ allora il trinomio di secondo grado è lo sviluppo di un quadrato di binomio.

•
$$x^2 - 6x + 9 \ge 0 \longrightarrow \Delta = 0 \longrightarrow (x - 3)^2 \ge 0 \longrightarrow S$$
:
 $(-\infty, +\infty)$

•
$$x^2 - 6x + 9 > 0 \longrightarrow S : (-\infty, 3) \cup (3, +\infty)$$

•
$$x^2 - 6x + 9 < 0 \longrightarrow S : \emptyset$$

•
$$x^2 - 6x + 9 \le 0 \longrightarrow S : \{3\}$$

Sistemi di disequazioni

Sistema di disequazioni: insieme di due o più disequazioni, tutte nella stessa incognita, che si vuole siano soddisfatte **contemporaneamente**.

$$\begin{cases} x^2 \ge x \\ \sqrt{2} > 2(x+1) \end{cases}$$

Siano S_1, S_2, \ldots, S_n le soluzioni delle n disequazioni che costituiscono il sistema, allora la soluzione del sistema sarà

$$S: S_1 \cap S_2 \cap \cdots \cap S_n$$

Sistemi di disequazioni

$$\begin{cases} 2 - (5 - x) \le 1\\ (x - 1)^2 \ge (x + 1)^2\\ \frac{1}{3}x > 2x + 5 \end{cases}$$

Risolvendo le singole disequazioni si ottiene

$$\begin{cases} x \le 4 \\ x \le 0 \\ x < -3 \end{cases}$$

